47 research outputs found

    Precipitation and snow cover in the Himalaya: from reanalysis to regional climate simulations

    Get PDF
    We applied a Regional Climate Model (RCM) to simulate precipitation and snow cover over the Himalaya, between March 2000 and December 2002. Due to its higher resolution, our model simulates a more realistic spatial variability of wind and precipitation than those of the reanalysis of the European Centre of Medium range Weather Forecast (ECMWF) used as lateral boundaries. In this region, we found very large discrepancies between the estimations of precipitation provided by reanalysis, rain gauges networks, satellite observations, and our RCM simulation. Our model clearly underestimates precipitation at the foothills of the Himalaya and in its eastern part. However, our simulation provides a first estimation of liquid and solid precipitation in high altitude areas, where satellite and rain gauge networks are not very reliable. During the two years of simulation, our model resembles the snow cover extent and duration quite accurately in these areas. Both snow accumulation and snow cover duration differ widely along the Himalaya: snowfall can occur during the whole year in western Himalaya, due to both summer monsoon and mid-latitude low pressure systems bringing moisture into this region. In Central Himalaya and on the Tibetan Plateau, a much more marked dry season occurs from October to March. Snow cover does not have a pronounced seasonal cycle in these regions, since it depends both on the quite variable duration of the monsoon and on the rare but possible occurrence of snowfall during the extra-monsoon period

    Detecting improvements in forecast correlation skill: Statistical testing and power analysis

    Get PDF
    This is the final version. Available from the American Meteorological Society via the DOI in this recordThe skill of weather and climate forecast systems is often assessed by calculating the correlation coefficient between past forecasts and their verifying observations. Improvements in forecast skill can thus be quantified by correlation differences. The uncertainty in the correlation difference needs to be assessed to judge whether the observed difference constitutes a genuine improvement, or is compatible with random sampling variations. A widely used statistical test for correlation difference is known to be unsuitable, because it assumes that the competing forecasting systems are independent. In this paper, appropriate statistical methods are reviewed to assess correlation differences when the competing forecasting systems are strongly correlated with one another. The methods are used to compare correlation skill between seasonal temperature forecasts that differ in initialization scheme and model resolution. A simple power analysis framework is proposed to estimate the probability of correctly detecting skill improvements, and to determine the minimum number of samples required to reliably detect improvements. The proposed statistical test has a higher power of detecting improvements than the traditional test. The main examples suggest that sample sizes of climate hindcasts should be increased to about 40 years to ensure sufficiently high power. It is found that seasonal temperature forecasts are significantly improved by using realistic land surface initial conditions.The authors acknowledge support by the European Union Program FP7/2007-13 under Grant Agreement 3038378 (SPECS). The work of O. Bellprat was funded by ESA under the Climate Change Initiative (CCI) Living Planet Fellowship VERITAS-CCI

    Robust multi-year climate impacts of volcanic eruptions in decadal prediction systems

    Get PDF
    Major tropical volcanic eruptions have a large impact on climate, but there have only been three major eruptions during the recent relatively well-observed period. Models are therefore an important tool to understand and predict the impacts of an eruption. This study uses five state-of-the-art decadal prediction systems that have been initialized with the observed state before volcanic aerosols are introduced. The impact of the volcanic aerosols is found by subtracting the results of a reference experiment where the volcanic aerosols are omitted. We look for the robust impact across models and volcanoes by combining all the experiments, which helps reveal a signal even if it is weak in the models. The models used in this study simulate realistic levels of warming in the stratosphere, but zonal winds are weaker than the observations. As a consequence, models can produce a pattern similar to the North Atlantic Oscillation in the first winter following the eruption, but the response and impact on surface temperatures is weaker than in observations. Reproducing the pattern, but not the amplitude, may be related to a known model error. There are also impacts in the Pacific and Atlantic Oceans. This work contributes towards improving the interpretation of decadal predictions in the case of a future large tropical volcanic eruption

    Equilibrium of sinks and sources of sulphate over Europe: comparison between a six-year simulation and EMEP observations

    Get PDF
    Sulphate distributions were simulated with a global chemistry transport model. A chemical scheme describing the sulphur cycle and the parameterisations of the main sinks for sulphate aerosols were included in the model. A six-year simulation was conducted from the years 2000 to 2005, driven by the ECMWF operational analyses. Emissions come from an inventory representative of the year 2000. This paper focuses on the analysis of the sulphate sinks and sources over Europe for the entire period of simulation. The Sulphate burden shows a marked annual cycle, which is the result of the annual variations of the aqueous and gaseous chemistry. Regionally, the monthly mean aerosol burden can vary by a factor of 2 from one year to another, because of different weather conditions, driving chemistry, transport and wet deposition of sulphate aerosols. Sulphate ground concentrations, scavenging fluxes and precipitation modelled were compared with observations. The model represents quite well sulphate fields over Europe, but has a general tendency to overestimate sulphate ground concentrations, in particular over Northern Europe. We assume that it is linked to the representation of the scavenging fluxes, which are underestimated. We suggest that uncertainties in modelled precipitation explain only partially the underestimation of the scavenging fluxes in the model

    Twentieth century temperature and snow cover changes in the French Alps

    Full text link
    International audienceChanges in snow cover associated with the warming of the French Alps greatly influence social-ecological systems through their impact on water resources, mountain ecosystems, economic activities, and glacier mass balance. In this study, we investigated trends in snow cover and temperature over the twentieth century using climate model and reanalysis data. The evolution of temperature, precipitation and snow cover in the European Alps has been simulated with the Modèle Atmospherique Régional (MAR) applied with a 7-km horizontal resolution and driven by ERA-20C (1902-2010) and ERA5 (1981–2018) reanalyses data. Snow cover duration and snow water equivalent (SWE) simulated with MAR are compared to the SAFRAN - SURFEX-ISBA-Crocus - MEPRA meteorological and snow cover reanalysis (S2M) data across the French Alps (1958–2018) and in situ glacier mass balance measurements. MAR outputs provide a realistic distribution of SWE and snow cover duration as a function of elevation in the French Alps. Large disagreements are found between the datasets in terms of absolute warming trends over the second part of the twentieth century. MAR and S2M trends are in relatively good agreement for the decrease in snow cover duration, with higher decreases at low elevation ( ∼\sim ∼ 5–10%/decade). Consistent with other studies, the highest warming rates in MAR occur at low elevations ( 2000 m a.s.l) in summer. In spring, warming trends show a maximum at intermediate elevations (1500 to 1800 m). Our results suggest that higher warming at these elevations is mostly linked to the snow-albedo feedback in spring and summer caused by the disappearance of snow cover at higher elevation during these seasons. This work has evidenced that depending on the season and the period considered, enhanced warming at higher elevations may or may not be found. Additional analysis in a physically comprehensive way and more high-quality dataset, especially at high elevations, are still required to better constrain and quantify climate change impacts in the Alps and its relation to elevation

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond

    Review article of the current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change

    Full text link
    The aim of this paper is to provide the community with a comprehensive overview of the studies of glaciers in the tropical Andes conducted in recent decades leading to the current status of the glaciers in the context of climate change. In terms of changes in surface area and length, we show that the glacier retreat in the tropical Andes over the last three decades is unprecedented since the maximum extension of the LIA (mid 17th–early 18th century). In terms of changes in mass balance, although there have been some sporadic gains on several glaciers, we show that the trend has been quite negative over the past 50 yr, with a mean mass balance deficit for glaciers in the tropical Andes that is slightly more negative than the computed global average. A break point in the trend appeared in the late 1970s with mean annual mass balance per year decreasing from −0.2m w.e. in the period 1964–1975 to −0.76m w.e. in the period 1976–2010. In addition, even if glaciers are currently retreating everywhere in the tropical Andes, it should be noted that as a percentage, this is much more pronounced on small glaciers at low altitudes that do not have a permanent accumulation zone, and which could disappear in the coming years/decades. Monthly mass balance measurements performed in Bolivia, Ecuador and Colombia showed that variability of the surface temperature of the Pacific Ocean is the main factor governing variability of the mass balance variability at the interannual to decadal time scale. Precipitation did not display a significant trend in the tropical Andes in the 20th century, and consequently cannot explain the glacier recession. On the other hand, temperature increased at a significant rate of 0.10◦Cdecade−1 in the last 70 yr. The higher frequency of El Nin ̃o events and changes in its spatial and temporal occurrence since the late 1970s together with a warming troposphere over the tropical Andes may thus explain much of the recent dramatic shrinkage of glaciers in this part of the world

    The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6

    Get PDF
    The Earth system model EC-Earth3 for contributions to CMIP6 is documented here, with its flexible coupling framework, major model configurations, a methodology for ensuring the simulations are comparable across different high-performance computing (HPC) systems, and with the physical performance of base configurations over the historical period. The variety of possible configurations and sub-models reflects the broad interests in the EC-Earth community. EC-Earth3 key performance metrics demonstrate physical behavior and biases well within the frame known from recent CMIP models. With improved physical and dynamic features, new Earth system model (ESM) components, community tools, and largely improved physical performance compared to the CMIP5 version, EC-Earth3 represents a clear step forward for the only European community ESM. We demonstrate here that EC-Earth3 is suited for a range of tasks in CMIP6 and beyond.Peer reviewe
    corecore